Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake

نویسندگان

  • Ken-ichiro Nakajima
  • Zhenzhong Cui
  • Chia Li
  • Jaroslawna Meister
  • Yinghong Cui
  • Ou Fu
  • Adam S. Smith
  • Shalini Jain
  • Bradford B. Lowell
  • Michael J. Krashes
  • Jürgen Wess
چکیده

Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FoxO1 Target Gpr17 Activates AgRP Neurons to Regulate Food Intake

Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. ...

متن کامل

Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation.

During lactation, the levels of neuropeptide Y (NPY), which plays an important role in mediating food intake, are significantly elevated in a number of hypothalamic areas, including the arcuate nucleus (ARH). To identify additional hypothalamic systems that might be important in mediating the increase in food intake and alterations in energy homeostasis during lactation, the present studies exa...

متن کامل

Hunger neurons drive feeding through a sustained, positive reinforcement signal

The neural mechanisms underlying hunger are poorly understood. AgRP neurons are activated by energy deficit and promote voracious food consumption, suggesting these cells may supply the fundamental hunger drive that motivates feeding. However recent in vivo recording experiments revealed that AgRP neurons are inhibited within seconds by the sensory detection of food, raising the question of how...

متن کامل

Hypothalamic Agrp Neurons Drive Stereotypic Behaviors beyond Feeding

The nervous system evolved to coordinate flexible goal-directed behaviors by integrating interoceptive and sensory information. Hypothalamic Agrp neurons are known to be crucial for feeding behavior. Here, however, we show that these neurons also orchestrate other complex behaviors in adult mice. Activation of Agrp neurons in the absence of food triggers foraging and repetitive behaviors, which...

متن کامل

Agouti-related protein increases food hoarding more than food intake in Siberian hamsters.

Agouti-related protein (AgRP), an endogenous melanocortin 3/4 receptor antagonist, appears to play an important role in the control of food intake and energy balance because exogenous administration in rats and overexpression in mice result in hyperphagia and body mass gain. Furthermore, arcuate nucleus AgRP mRNA is increased with fasting in laboratory rats and mice and is decreased with refeed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016